Medizin - Open Access LMU - Teil 21/22
Medizin - Open Access LMU - Teil 21/22

Medizin - Open Access LMU - Teil 21/22

Ludwig-Maximilians-Universität München

Overview
Episodes

Details

Die Universitätsbibliothek (UB) verfügt über ein umfangreiches Archiv an elektronischen Medien, das von Volltextsammlungen über Zeitungsarchive, Wörterbücher und Enzyklopädien bis hin zu ausführlichen Bibliographien und mehr als 1000 Datenbanken reicht. Auf iTunes U stellt die UB unter anderem eine Auswahl an elektronischen Publikationen der Wissenschaftlerinnen und Wissenschaftler an der LMU bereit. (Dies ist der 21. von 22 Teilen der Sammlung 'Medizin - Open Access LMU'.)

Recent Episodes

Systematic permutation testing in GWAS pathway analyses: identification of genetic networks in dilated cardiomyopathy and ulcerative colitis
JAN 1, 2014
Systematic permutation testing in GWAS pathway analyses: identification of genetic networks in dilated cardiomyopathy and ulcerative colitis
Background: Genome wide association studies (GWAS) are applied to identify genetic loci, which are associated with complex traits and human diseases. Analogous to the evolution of gene expression analyses, pathway analyses have emerged as important tools to uncover functional networks of genome-wide association data. Usually, pathway analyses combine statistical methods with a priori available biological knowledge. To determine significance thresholds for associated pathways, correction for multiple testing and over-representation permutation testing is applied. Results: We systematically investigated the impact of three different permutation test approaches for over-representation analysis to detect false positive pathway candidates and evaluate them on genome-wide association data of Dilated Cardiomyopathy (DCM) and Ulcerative Colitis (UC). Our results provide evidence that the gold standard - permuting the case-control status - effectively improves specificity of GWAS pathway analysis. Although permutation of SNPs does not maintain linkage disequilibrium (LD), these permutations represent an alternative for GWAS data when case-control permutations are not possible. Gene permutations, however, did not add significantly to the specificity. Finally, we provide estimates on the required number of permutations for the investigated approaches. Conclusions: To discover potential false positive functional pathway candidates and to support the results from standard statistical tests such as the Hypergeometric test, permutation tests of case control data should be carried out. The most reasonable alternative was case-control permutation, if this is not possible, SNP permutations may be carried out. Our study also demonstrates that significance values converge rapidly with an increasing number of permutations. By applying the described statistical framework we were able to discover axon guidance, focal adhesion and calcium signaling as important DCM-related pathways and Intestinal immune network for IgA production as most significant UC pathway.
play-circle
-1 MIN
On the potential of models for location and scale for genome-wide DNA methylation data
JAN 1, 2014
On the potential of models for location and scale for genome-wide DNA methylation data
Background: With the help of epigenome-wide association studies (EWAS), increasing knowledge on the role of epigenetic mechanisms such as DNA methylation in disease processes is obtained. In addition, EWAS aid the understanding of behavioral and environmental effects on DNA methylation. In terms of statistical analysis, specific challenges arise from the characteristics of methylation data. First, methylation beta-values represent proportions with skewed and heteroscedastic distributions. Thus, traditional modeling strategies assuming a normally distributed response might not be appropriate. Second, recent evidence suggests that not only mean differences but also variability in site-specific DNA methylation associates with diseases, including cancer. The purpose of this study was to compare different modeling strategies for methylation data in terms of model performance and performance of downstream hypothesis tests. Specifically, we used the generalized additive models for location, scale and shape (GAMLSS) framework to compare beta regression with Gaussian regression on raw, binary logit and arcsine square root transformed methylation data, with and without modeling a covariate effect on the scale parameter. Results: Using simulated and real data from a large population-based study and an independent sample of cancer patients and healthy controls, we show that beta regression does not outperform competing strategies in terms of model performance. In addition, Gaussian models for location and scale showed an improved performance as compared to models for location only. The best performance was observed for the Gaussian model on binary logit transformed beta-values, referred to as M-values. Our results further suggest that models for location and scale are specifically sensitive towards violations of the distribution assumption and towards outliers in the methylation data. Therefore, a resampling procedure is proposed as a mode of inference and shown to diminish type I error rate in practically relevant settings. We apply the proposed method in an EWAS of BMI and age and reveal strong associations of age with methylation variability that are validated in an independent sample. Conclusions: Models for location and scale are promising tools for EWAS that may help to understand the influence of environmental factors and disease-related phenotypes on methylation variability and its role during disease development.
play-circle
-1 MIN
Validation of the prognostic Heidelberg re-irradiation score in an independent mono-institutional patient cohort
JAN 1, 2014
Validation of the prognostic Heidelberg re-irradiation score in an independent mono-institutional patient cohort
Purpose: Re-irradiation has been shown to be a valid option with proven efficacy for recurrent high-grade glioma patients. Overall, up to now it is unclear which patients might be optimal candidates for a second course of irradiation. A recently reported prognostic score developed by Combs et al. may guide treatment decisions and thus, our mono-institutional cohort served as validation set to test its relevance for clinical practice. Patients and methods: The prognostic score is built upon histology, age (< 50 vs. >= 50 years) and the time between initial radiotherapy and re-irradiation (<= 12 vs. > 12 months). This score was initially introduced to distinguish patients with excellent (0 points), good (1 point), moderate (2 points) and poor (3-4 points) post-recurrence survival (PRS) after re-irradiation. Median prescribed radiation dose during re-treatment of recurrent malignant glioma was 36 Gy in 2 Gy single fractions. A substantial part of the patients was additionally treated with bevacizumab (10 mg/kg intravenously at d1 and d15 during re-irradiation). Results: 88 patients (initially 61 WHO IV, 20 WHO III, 7 WHO II) re-irradiated in a single institution were retrospectively analyzed. Median follow-up was 30 months and median PRS of the entire patient cohort 7 months. Seventy-one patients (80.7%) received bevacizumab. PRS was significantly increased in patients receiving bevacizumab (8 vs. 6 months, p = 0.027, log-rank test). KPS, age, MGMT methylation status, sex, WHO grade and the Heidelberg score showed no statistically significant influence on neither PR-PFS nor PRS. Conclusion: In our cohort which was mainly treated with bevacizumab the usefulness of the Heidelberg score could not be confirmed probably due to treatment heterogeneity; it can be speculated that larger multicentric data collections are needed to derive a more reliable score.
play-circle
-1 MIN