The Ravit Show
The Ravit Show

The Ravit Show

Ravit Jain

Overview
Episodes

Details

The Ravit Show aims to interview interesting guests, panels, companies and help the community to gain valuable insights and trends in the Data Science and AI space! The show has CEOs, CTOs, Professors, Tech Authors, Data Scientists, Data Engineers, Data Analysts and many more from the industry and academia side. We do live shows on LinkedIn, YouTube, Facebook and other platforms. The motto of The Ravit Show is to the Data Science/AI community grow together!

Recent Episodes

Streaming: where and when does it make sense vs batch integration; CDC best practices
DEC 22, 2025
Streaming: where and when does it make sense vs batch integration; CDC best practices
Real-time data is no longer a future problem. At Small Data SF by MotherDuck, I sat down with David Yaffe, Co-Founder & CEO at Estuary, to talk about what has changed in the world of data streaming!!!!A few years ago, real-time data was something most teams put on their “later” list. Expensive. Hard to scale. Too complex for most use cases.But as David shared, that story has shifted fast.Here are some takeaways from our conversation:- Streaming is now viable for everyoneWith cheaper compute, mature tooling, and simpler developer experiences, real-time data isn’t a luxury anymore. The barriers that once made it a niche capability are gone- Batch vs Real-time: Asking the right questionsBefore jumping to streaming, David suggests asking what problems you’re solving — speed for the sake of speed rarely pays off. Sometimes batch is just fine. The goal is fit, not flash- Architecture mattersMoving from batch to streaming means thinking end-to-end: from schema evolution and error handling to observability. Teams that skip this planning end up redoing pipelines- CDC done rightChange Data Capture is powerful, but it’s easy to misuse. The most common mistake? Treating CDC as an ETL replacement rather than an event system. Understanding that difference prevents pain later- The conversation was practical, focused, and refreshing.Real-time isn’t about chasing trends, it’s about enabling faster insights and cleaner data movement with less friction.If you’ve been wondering when “real-time” becomes realistic, this one will give you a clear answer.#data #ai #motherduck #smalldatasf #theravitshow
play-circle icon
8 MIN
What a "Data Culture" means, Data Modeling best practices
DEC 17, 2025
What a "Data Culture" means, Data Modeling best practices
Small Data is having a big moment!!!! I covered Small Data SF by MotherDuck in person and sat down with Brittany Bafandeh, CEO at Data Culture. We talked about the real blockers to impact and how teams can move faster with the data they already have.Here is what we got into:When it is not a data problem - Brittany walked through a case where dashboards, pipelines, and new tools were not the fix. The real issue was slow decisions and unclear ownership. Once they set decision rights and clear KPIs, outcomes changed without buying more tech.Do you have a data culture or just tools - As a consultant, she looks for simple signals. Are decisions tied to metrics. Do teams review outcomes every week. Are definitions shared. If the answer is no, that is an infrastructure shell without culture inside it.Consultant vs in house - Consultants can push for focus and bring patterns from many teams. In house leaders win by staying close to the business and building habits that last. The best results happen when both mindsets meet.One modeling habit that breaks things - Teams jump to complex models too soon. Brittany’s fix is to model around decisions first. Keep names, metrics, and grain simple. Let complexity come only when the use case proves it.Why this mattersMost teams do not need more tools to get value. They need faster decisions, shared language, and simple models that match the business. Small data, used well, beats big stacks used poorly!!!!I am publishing the full interview next. If you care about real outcomes with the stack you already have, you will like this one.#data #ai #motherduck #smalldatasf #theravitshow
play-circle icon
6 MIN
Building AI Ready Infrastructure Across APJC With Cisco
DEC 16, 2025
Building AI Ready Infrastructure Across APJC With Cisco
Most companies say they are “doing AI.” Very few are actually ready for it. In my new episode of The Ravit Show, I sat down with Simon Miceli, Managing Director, Cisco, who leads Cloud and AI Infrastructure across Asia Pacific, Japan, and Greater China. He sits right where big AI ambitions meet the hard reality of networks, security, and technical debt.This conversation builds on my earlier episode with Jeetu Patel, President and CPO Cisco and goes deeper into what it really takes to get AI working in production in APJC.Here are a few themes we unpacked:-- Only a small group is truly AI ready- Cisco’s latest AI Readiness Index shows that just a small percentage of organizations globally are able to turn AI into real business value. Cisco calls them “Pacesetters.”- They are not just running pilots. They have use cases in production and are seeing returns.-- We are entering the agentic phase of AI- Simon talked about how we are moving from simple chatbots to AI agents that can take action.- That shift changes everything for infrastructure.- Instead of short bursts of activity, you now have systems that are always working in the background, automating processes and touching real operations.-- AI infrastructure debt is the new technical debt*- Many organizations are carrying years of compromises in their networks, data centers, and security.- Simon called this “AI infrastructure debt” and described how it quietly slows down innovation, increases costs, and makes it harder to scale AI safely.-- Network as a foundation, not an afterthought- One of his strongest points: leaders often think first about compute, but the companies that are ahead treat the network as the base layer for AI.- When workloads double, your network can become the bottleneck before your GPUs do. - The Pacesetters are already investing to make their networks “AI ready” and integrating AI deeply with both network and cloud.Three things leaders must fix in the next 2–3 yearsSimon shared a very clear checklist for CIOs and business leaders who are serious about agentic AI: 1. Solve for power before it becomes a constraint 2. Treat deployment as day one and keep optimizing models after they go live 3. Build security into the infrastructure from the start so it accelerates innovation instead of blocking itThis was a very honest, no-nonsense view of where APJC really stands on AI, and what the leading organizations are doing differently!!!!Thank you Simon for joining me and sharing how Cisco is thinking about AI infrastructure across the region.#data #ai #cisco #CiscoLiveAPJC #Sponsored #CiscoPartner #TheRavitShow
play-circle icon
21 MIN