<description>&lt;div class="OutlineElement Ltr SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent; overflow: visible; cursor: text; clear: both; position: relative; direction: ltr; color: #000000; font-family: 'Segoe UI', 'Segoe UI Web', Arial, Verdana, sans-serif; font-size: 12px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"&gt; &lt;p class="Paragraph SCXW103675456 BCX0" style= "margin: 0px 0px 10.6667px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent; overflow-wrap: break-word; white-space: pre-wrap; font-weight: normal; font-style: normal; vertical-align: baseline; font-kerning: none; background-color: transparent; color: windowtext; text-align: left; text-indent: 0px;"&gt; &lt;span class="TextRun SCXW103675456 BCX0" lang="EN-US" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent; font-variant-ligatures: none !important; font-size: 12pt; line-height: 22.0083px; font-family: Aptos, Aptos_EmbeddedFont, sans-serif;" xml:lang="EN-US" data-contrast="auto"&gt;&lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; Modern data analytic methods and tools—including artificial intelligence (AI) and machine learning (ML) classifiers—are revolutionizing prediction capabilities and automation through their capacity to analyze and classify data. To produce such results, these methods depend on correlations. However, an overreliance on correlations can lead to prediction bias and reduced confidence in AI outputs.&lt;/span&gt;&lt;/span&gt;&lt;span class= "EOP SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent; font-size: 12pt; line-height: 22.0083px; font-family: Aptos, Aptos_EmbeddedFont, sans-serif;" data-ccp-props="{}"&gt; &lt;/span&gt;&lt;/p&gt; &lt;/div&gt; &lt;div class="OutlineElement Ltr SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent; overflow: visible; cursor: text; clear: both; position: relative; direction: ltr; color: #000000; font-family: 'Segoe UI', 'Segoe UI Web', Arial, Verdana, sans-serif; font-size: 12px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; white-space: normal; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"&gt; &lt;p class="Paragraph SCXW103675456 BCX0" style= "margin: 0px 0px 10.6667px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent; overflow-wrap: break-word; white-space: pre-wrap; font-weight: normal; font-style: normal; vertical-align: baseline; font-kerning: none; background-color: transparent; color: windowtext; text-align: left; text-indent: 0px;"&gt; &lt;span class="TextRun SCXW103675456 BCX0" lang="EN-US" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent; font-variant-ligatures: none !important; font-size: 12pt; line-height: 22.0083px; font-family: Aptos, Aptos_EmbeddedFont, sans-serif;" xml:lang="EN-US" data-contrast="auto"&gt;&lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; Drift in data and concept, evolving edge cases, and emerging phenomena can undermine the correlations that AI classifiers rely on.&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; As the U.S. government increases its use of AI classifiers and predictors, these issues&lt;/span&gt; &lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; multiply (or use increase again)&lt;/span&gt;&lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt;.&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; Subsequently,&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; users may grow to distrust results. To&lt;/span&gt; &lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; address&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style="margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; inaccurate&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; erroneous&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; cor&lt;/span&gt;&lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt;r&lt;/span&gt;&lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt;elation&lt;/span&gt;&lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt;s and predictions&lt;/span&gt;&lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt;, we&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; need new&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; methods for ongoing testing and evaluation&lt;/span&gt; &lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; of AI and ML accuracy. In this podcast from the Carnegie Mellon University Software Engineering Institute&lt;/span&gt; &lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; (SEI)&lt;/span&gt;&lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt;, Nicholas Testa,&lt;/span&gt; &lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; a senior data scientist in the SEI's Software Solutions Division&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; (SSD)&lt;/span&gt;&lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt;, and Crisanne Nolan, and&lt;/span&gt; &lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; Agile transformation engineer, also in SSD, sit down with Linda Parker Gates,&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; Principal Investigator for this research and&lt;/span&gt; &lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; initiative lead for Software Acquisition Pathways at the SEI, to discuss&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style="margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; the&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; AI Robustness (AIR) tool&lt;/span&gt;&lt;span class= "NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt;, which&lt;/span&gt; &lt;span class="NormalTextRun SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent;"&gt; allows users to gauge AI and ML classifier performance with data-based confidence.&lt;/span&gt;&lt;/span&gt;&lt;span class= "EOP SCXW103675456 BCX0" style= "margin: 0px; padding: 0px; user-select: text; -webkit-user-drag: none; -webkit-tap-highlight-color: transparent; font-size: 12pt; line-height: 22.0083px; font-family: Aptos, Aptos_EmbeddedFont, sans-serif;" data-ccp-props="{}"&gt; &lt;/span&gt;&lt;/p&gt; &lt;/div&gt;</description>

Software Engineering Institute (SEI) Podcast Series

Members of Technical Staff at the Software Engineering Institute

From Data to Performance: Understanding and Improving Your AI Model

NOV 10, 202526 MIN
Software Engineering Institute (SEI) Podcast Series

From Data to Performance: Understanding and Improving Your AI Model

NOV 10, 202526 MIN

Description

Modern data analytic methods and tools—including artificial intelligence (AI) and machine learning (ML) classifiers—are revolutionizing prediction capabilities and automation through their capacity to analyze and classify data. To produce such results, these methods depend on correlations. However, an overreliance on correlations can lead to prediction bias and reduced confidence in AI outputs.

Drift in data and concept, evolving edge cases, and emerging phenomena can undermine the correlations that AI classifiers rely on. As the U.S. government increases its use of AI classifiers and predictors, these issues multiply (or use increase again). Subsequently, users may grow to distrust results. To address inaccurate erroneous correlations and predictions, we need new methods for ongoing testing and evaluation of AI and ML accuracy. In this podcast from the Carnegie Mellon University Software Engineering Institute (SEI), Nicholas Testa, a senior data scientist in the SEI's Software Solutions Division (SSD), and Crisanne Nolan, and Agile transformation engineer, also in SSD, sit down with Linda Parker Gates, Principal Investigator for this research and initiative lead for Software Acquisition Pathways at the SEI, to discuss the AI Robustness (AIR) tool, which allows users to gauge AI and ML classifier performance with data-based confidence.